СИСТЕМЫ ОБРАБОТКИ МЕДИАДАННЫХ КЛАССИФИКАЦИЯ. ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

д.т.н., доцент Вашкевич М. И.

vashkevich@bsuir.by

Белорусский государственный университет информатики и радиоэлектроники

Кафедра электронных вычислительных средств

Задача классификации

Пример: классификация ирисов (Фишер, 1940-е)

150 растений (50 каждого сорта)

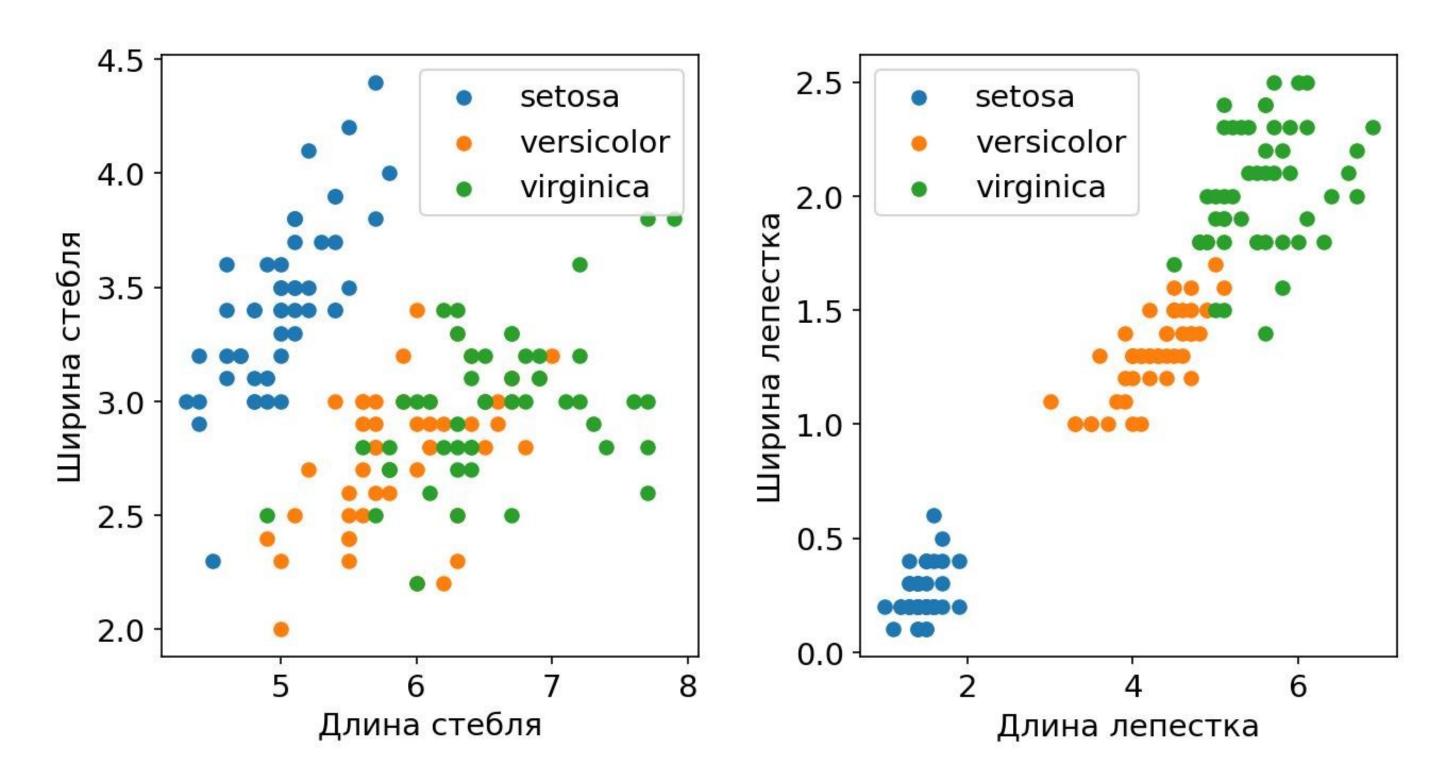
- сорта: щетинистый, разноцветный, виргинский
- длина и ширина чашелистика (в см)
- длина и ширина лепестка (в см)

Ирис щетинистый (setosa)

Ирис разноцветный (versicolor)

Ирис виргинский (verginica)

Задача классификации



• X_1, X_2, \ldots, X_p –предикторы (или описательные признаки).

Все предикторы можно объединить в один вектор

$$X \coloneqq (X_1, X_2, \dots, X_p)$$

• Y – случайная величина, называемая целевой переменной

• X_1, X_2, \ldots, X_p –предикторы (или описательные признаки).

Все предикторы можно объединить в один вектор

$$X \coloneqq (X_1, X_2, \dots, X_p)$$

- Y случайная величина, называемая целевой переменной
- Пусть y область значений Y. В задаче классификации y это конечное множество классов (пространство меток классов). Иногда говорят, что y относится к **категориальному** типу данных.
- $\mathcal{D} \subset \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ множество примеров из неизвестного совместного распределения p(X,Y) входов и выходов, которое называется **данными**.
- $\mathcal D$ обычно записывается списком

$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

• Задача классификации – предсказать Y на основе X.

$$f: X \to Y$$

• f(x) иногда называются **помечающей функцией**.

• Задача классификации – предсказать Y на основе X.

$$f: X \to Y$$

• f(x) иногда называются **помечающей функцией**.

• Под обучением классификатора понимается построение функции $\hat{f}(x)$, которая как можно лучше аппроксимирует f(x).

• Задача классификации – предсказать Y на основе X.

$$f: X \to Y$$

• f(x) иногда называются **помечающей функцией**.

- Под обучением классификатора понимается построение функции $\hat{f}(x)$, которая как можно лучше аппроксимирует f(x).
- Другими словами, необходимо оценить функцию

$$f(x) \coloneqq E\{Y|X = x\} = \int y \cdot p(y|x) dy$$

на основе имеющихся данных \mathcal{D} .

Бинарная классификация

В простейшем случае есть всего два класса, которые называют **положительным** и **отрицательным**, \oplus и \ominus или +1 и -1.

Двухклассовую классификацию называют бинарной классификацией.

Примеры

- Фильтрация спама
- Медицинская диагностика (⊕ наличие заболевания)
- Обнаружение мошенничества с кредитными картами.

Бинарная классификация

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	 \mathbf{X}_N
Метки	+	+		+	
Предсказание					
модели					

Бинарная классификация

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	$\mathbf{x_4}$	•••	\mathbf{x}_N
Метки y_i	+	(+)		(+)	•••	
Предсказание модели \hat{y}_i		(±)				

Метка класса	Предсказание	Тип результата	Название ре-
	модели		зультата
	(1)	TP	Истинно-положи-
(+)		(True Positive)	тельный

Метка класса	Предсказание	Тип результата	Название ре-
	модели		зультата
(+)	(+)	TP	Истинно-положи-
		(True Positive)	тельный
(+)		FN	Ложно-отрица-
		(False Negative)	тельный

Метка класса	Предсказание модели	Тип результата	Название ре- зультата
(+)	(+)	TP (True Positive)	Истинно-положи- тельный
+		FN (False Negative)	Ложно-отрица- тельный
		TN (True Negative)	Истинно-отрица- тельный

Метка класса	Предсказание модели	Тип результата	Название ре- зультата
		TP	Истинно-положи-
(+)		(True Positive)	тельный
		FN	Ложно-отрица-
(+)		(False Negative)	тельный
		TN	Истинно-отрица-
		(True Negative)	тельный
	(+)	FP	Ложно-положи-
		(False Positive)	тельный

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X ₅	\mathbf{x}_6
Метки y_i	+	+		+		
Предсказание модели \hat{y}_i	(+)	(±)			(±)	
Тип результата	?	?	?	?	?	?

Данные	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
Метки y_i	+	+		+		
Предсказание модели \hat{y}_i	(±)	(±)				
Тип результата	TP	TP	?	?	?	?

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X ₅	\mathbf{x}_6
Метки y_i	+	(+)		+		
Предсказание модели \hat{y}_i	(±)	(±)			(±)	
Тип результата	TP	TP	TN	?	?	TN

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X ₅	\mathbf{x}_6
Метки y_i	(+)	(+)		(+)		
Предсказание модели \hat{y}_i	\oplus	(±)			(±)	
Тип результата	TP	TP	TN	FN	?	TN

Данные	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	$\mathbf{x_4}$	\mathbf{x}_5	\mathbf{x}_6
Метки y_i	+	(+)		(+)		
Предсказание модели \hat{y}_i	(+)	(±)				
Тип результата	TP	TP	TN	FN	FP	TN

Матрица неточностей

Confusion matrix – матрица неточностей (или матрица спутывания).

		Предсказань	ные метки	
cca				
летки кла	+	TP	FN	TP + FN
Истинные метки класса		FP	TN	FP + TN
NC		TP + FP	FN + TN	TP + TN + FP + FN

В последнем столбце и в последней строке находятся *маргиналы* – суммы элементов в соответствующем столбце и строке.

Матрица неточностей: пример

Метки y_i	+	(+)	<u>-</u>	(+)	<u>-</u>	<u>-</u>
Предсказание модели \hat{y}_i		(±)			(±)	
Тип	TP	TP	TN	FN	FP	TN

Матрица неточностей

		Предсказань		
မ ဗ				
нны клас	+	2	1	3
ИСТИ етки		1	2	3
Z		3	3	6

Правильность

Правильность (*accuracy*) – доля правильно классифицированных тестовых примеров.

$$Acc = \frac{TP + TN}{TP + FP + TN + FN}$$

Правильность

Правильность (*accuracy*) – доля правильно классифицированных тестовых примеров.

$$Acc = \frac{TP + TN}{TP + FP + TN + FN}$$

	,	Предсказанные метки		
e Ca				
Истинные етки класс	+	TP = 2	FN = 1	3
ИСТИ Метки	<u>-</u>	FP = 1	TN = 2	3
Σ		3	3	6

$$Acc = ?$$

Правильность

Правильность (*accuracy*) – доля правильно классифицированных тестовых примеров.

$$Acc = \frac{TP + TN}{TP + FP + TN + FN}$$

		Предсказанные метки		
e Ca				
Истинные метки класса	(+)	TP = 2	FN = 1	3
ИСТИ етки	<u>-</u>	FP = 1	TN = 2	3
Σ		3	3	6

$$Acc = \frac{2+2}{6} = \frac{2}{3} \approx 66\%$$

MOTUCTUYECKASI PETPECCUSI

Логистический сигмоид

Свойства логистической функции:

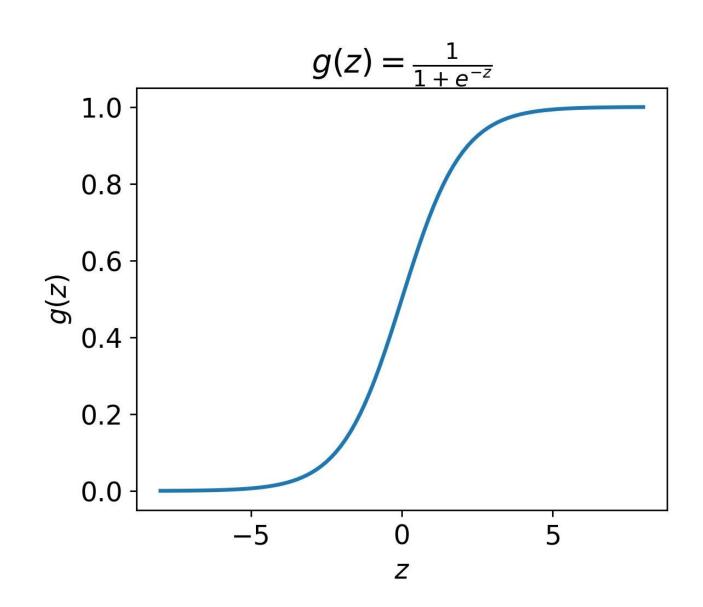
$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

- значения в диапазоне от 0 до 1;
- стремится к 1 при $z \to \infty$;
- стремится к 0 при $z \to -\infty$;
- гладкая и симметричная относительно точки (0, 0.5)
- Симметрия:

$$g(-z) = 1 - g(z).$$

• Производная:

$$\frac{dg}{dx} = g(x)(1 - g(x)).$$

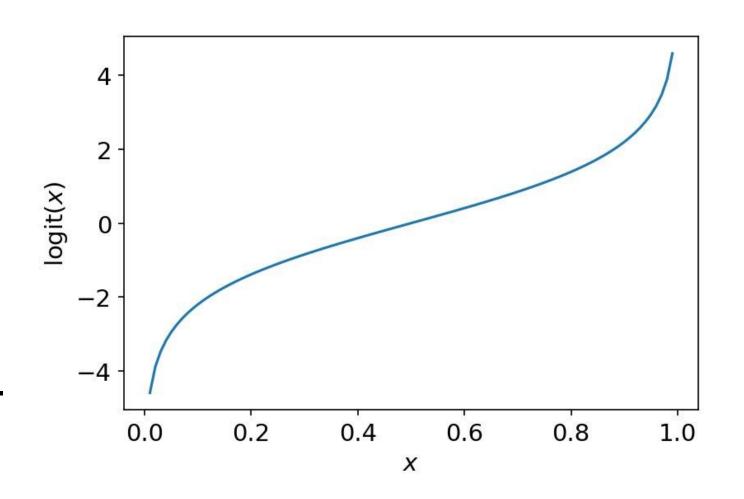


Логит-функция

Свойства логит-функции:

$$logit(x) = log\left(\frac{x}{1-x}\right)$$

- определена в диапазоне от 0 до 1;
- стремится к ∞ при $x \to 1$;
- стремится к $-\infty$ при $x \to 0$;
- гладкая и симметричная относительно точки (0, 0.5)
- обратная к логистической функции logit(g(x)) = x



Целевая переменная y является бинарной, т.е. $\mathcal{Y} \coloneqq \{0,1\}$.

Можно ли использовать модель линейной регрессии

$$y = \mathbf{w}^T \mathbf{x}$$

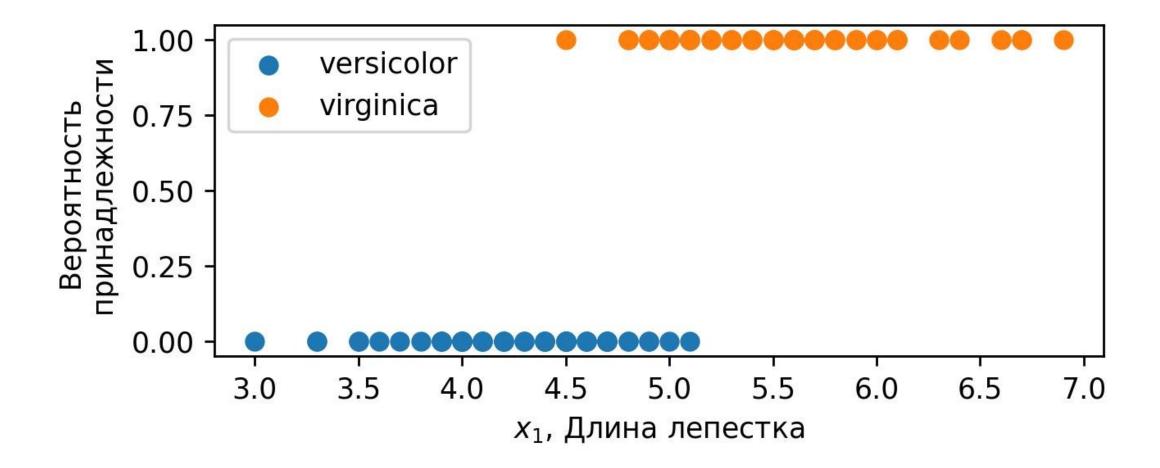
для классификации?

Целевая переменная y является бинарной, т.е. $\mathcal{Y} \coloneqq \{0,1\}$.

Можно ли использовать модель линейной регрессии

$$y = \mathbf{w}^T \mathbf{x}$$

для классификации?

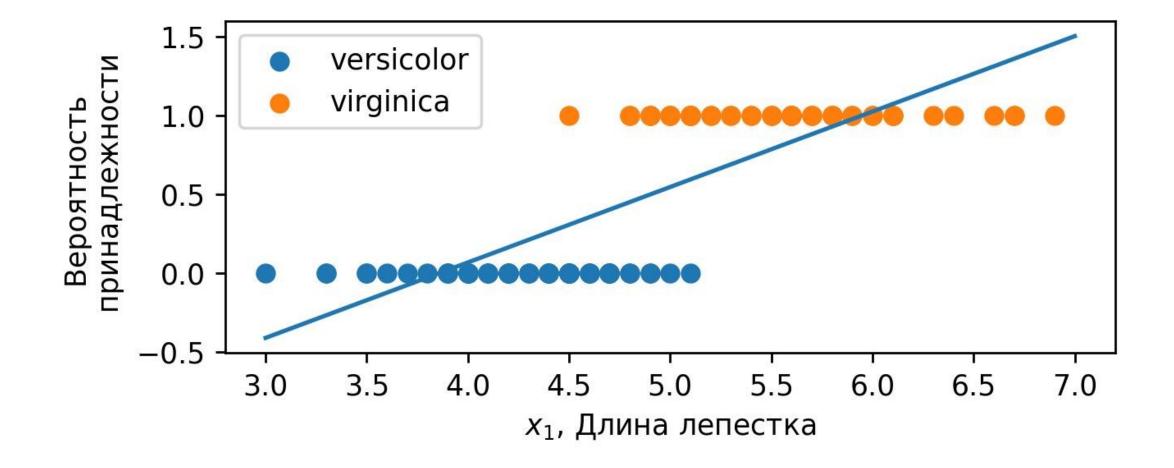


Целевая переменная y является бинарной, т.е. $\mathcal{Y} \coloneqq \{0,1\}$.

Можно ли использовать модель линейной регрессии

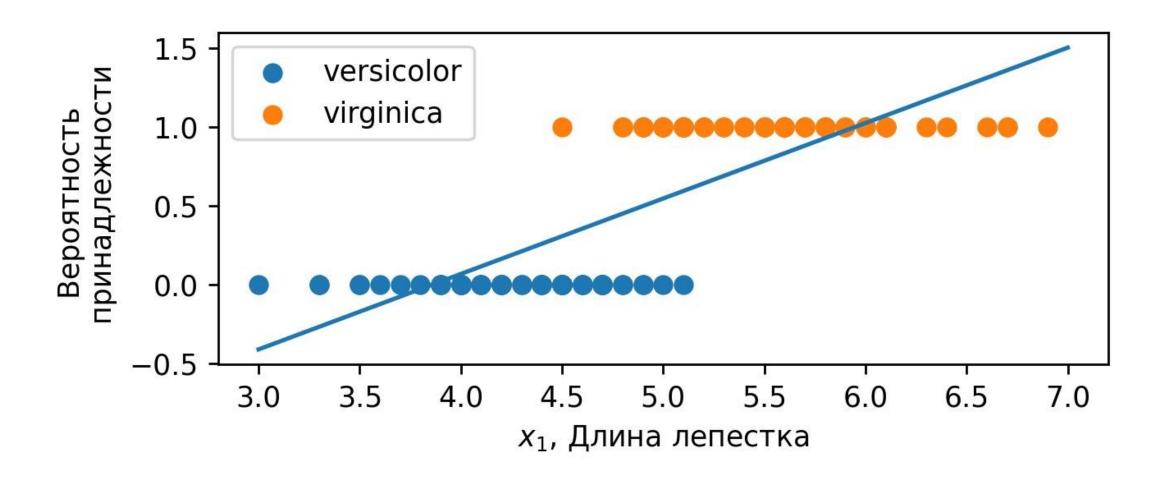
$$y = \mathbf{w}^T \mathbf{x}$$

для классификации?



• Линейная регрессия не подходит для предсказания вероятностей, поскольку предсказываемые ею значения принципиально не ограничены.

Применение линейной регрессии для бинарной классификации



БГУИР, кафедра ЭВС, Вашкевич М.И., 9 декабря 2024 г.

• Вместо предсказания у напрямую, можно предсказывать

 $P(y = 1 | \mathbf{x})$ – вероятность, что y = 1 при условии, что наблюдается \mathbf{x} .

• Вместо предсказания y напрямую, можно предсказывать $P(y=1|\mathbf{x})$ – вероятность, что y=1 при условии, что наблюдается \mathbf{x} .

• Для моделирования $P(y = 1 | \mathbf{x})$ необходима функция, которая всегда возвращает значения из интервала от 0 до 1. В логистической регрессии для этого применяют логистическую функцию (\bigcirc):

$$P(y = 1|\mathbf{x}) = p(\mathbf{x}) = g(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}.$$

БГУИР, кафедра ЭВС, Вашкевич М.И., 9 декабря 2024 г.

Интерпретация логистической регрессии

• Если преобразовать

$$p(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})},$$

то можно получить выражение:

$$\frac{p(\mathbf{x})}{1 - p(\mathbf{x})} = \exp(-\mathbf{w}^T \mathbf{x}).$$

• Величина $p(\mathbf{x})/(1-p(\mathbf{x}))$ называется **риск события** и принимает значения от 0 до ∞ .

Интерпретация логистической регрессии

• Если преобразовать

$$p(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})},$$

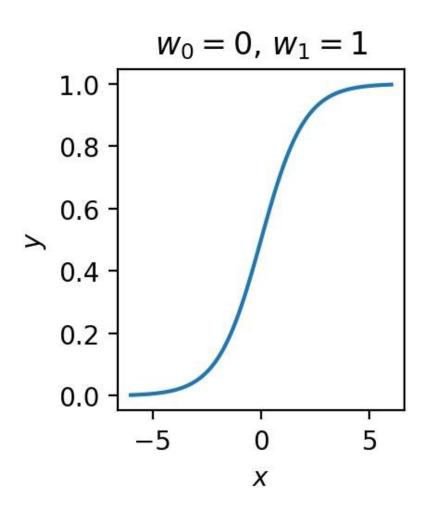
то можно получить выражение:

$$\frac{p(\mathbf{x})}{1 - p(\mathbf{x})} = \exp(-\mathbf{w}^T \mathbf{x}).$$

- Величина $p(\mathbf{x})/(1-p(\mathbf{x}))$ называется **риск события** и принимает значения от 0 до ∞ .
- Например, если вероятность события равна $p(\mathbf{x})=0.2$, то риск наступления этого события ¼, поскольку $\frac{0.2}{1-0.2}=1/4$.
- Какой риск, если $p(\mathbf{x}) = 0.9?$

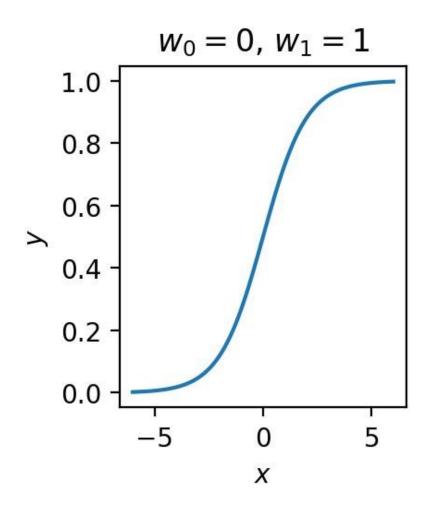
- Рассмотрим, как изменение **w** влияют на вид функции
- Пример одномерных данных:

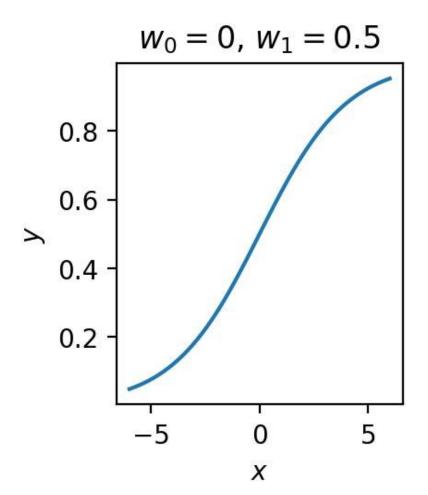
$$y = g(w_1x + w_0) = \frac{1}{1 + \exp(-(w_1x + w_0))}.$$



- Рассмотрим, как изменение **w** влияют на вид функции
- Пример одномерных данных:

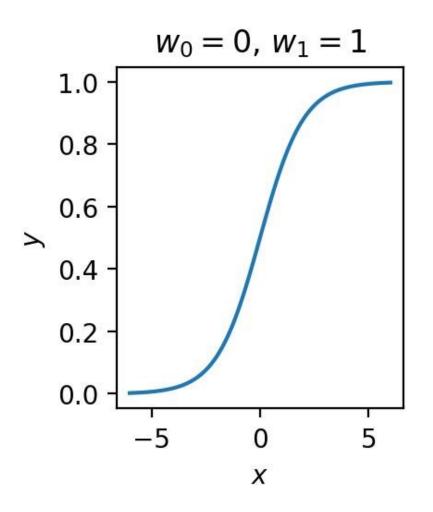
$$y = g(w_1x + w_0) = \frac{1}{1 + \exp(-(w_1x + w_0))}.$$

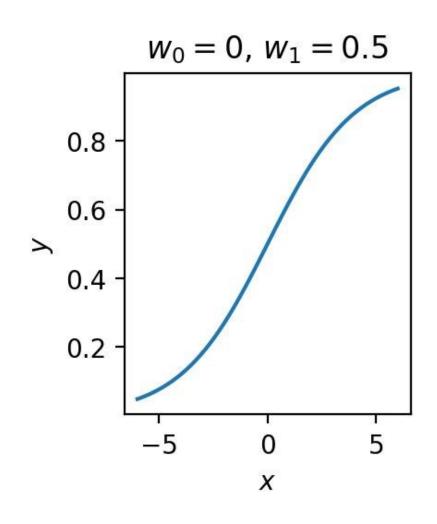


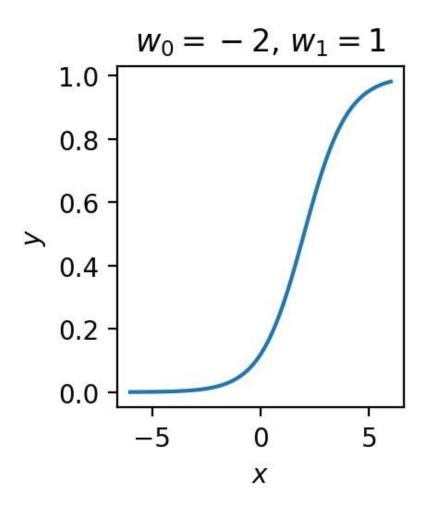


- Рассмотрим, как изменение **w** влияют на вид функции
- Пример одномерных данных:

$$y = g(w_1x + w_0) = \frac{1}{1 + \exp(-(w_1x + w_0))}.$$





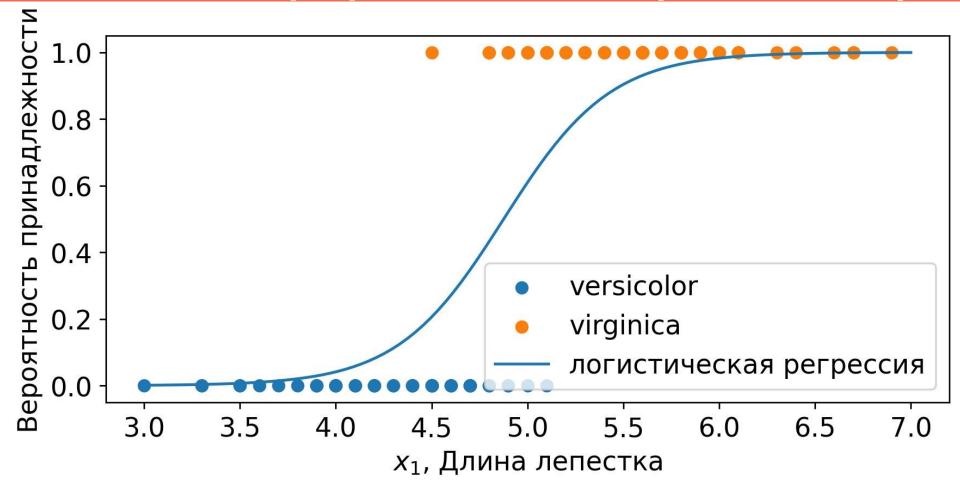


• Логистическая регрессия:

$$P(y = 1|\mathbf{x}) = g(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}.$$

• Логистическая функция всегда порождает *S*-образную кривую.

Применение логистической регрессии для бинарной классификации



Вероятностная интерпретация

• Поскольку мы интерпретируем $g(\mathbf{w}^T\mathbf{x})$ как вероятность $P(y=1|\mathbf{x})$, то, используя свойства вероятностей можно записать, что

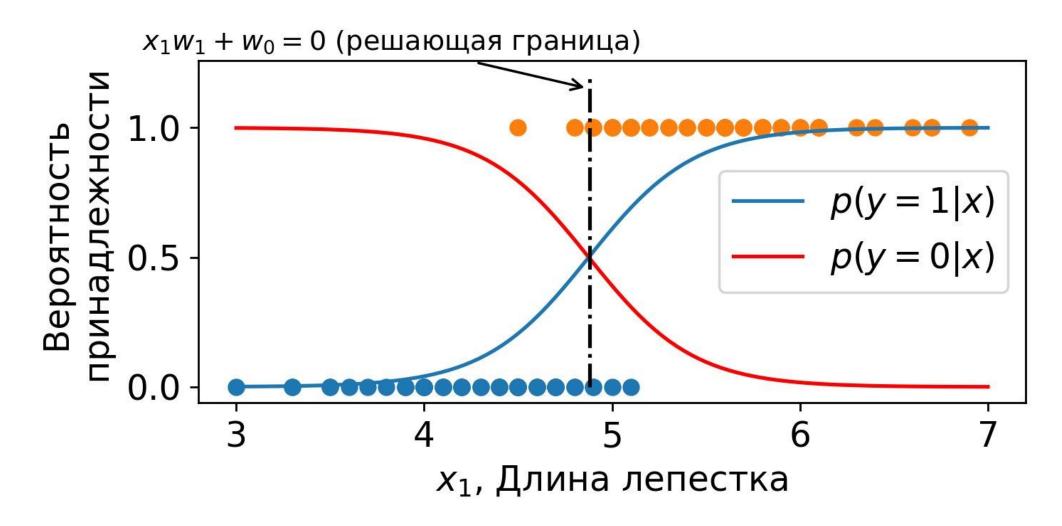
$$P(y = 1|\mathbf{x}) + P(y = 0|\mathbf{x}) = 1.$$

• Таким образом,

$$P(y = 0|\mathbf{x}) = 1 - P(y = 1|\mathbf{x}) = \frac{\exp(-\mathbf{w}^T\mathbf{x})}{1 + \exp(-\mathbf{w}^T\mathbf{x})}.$$

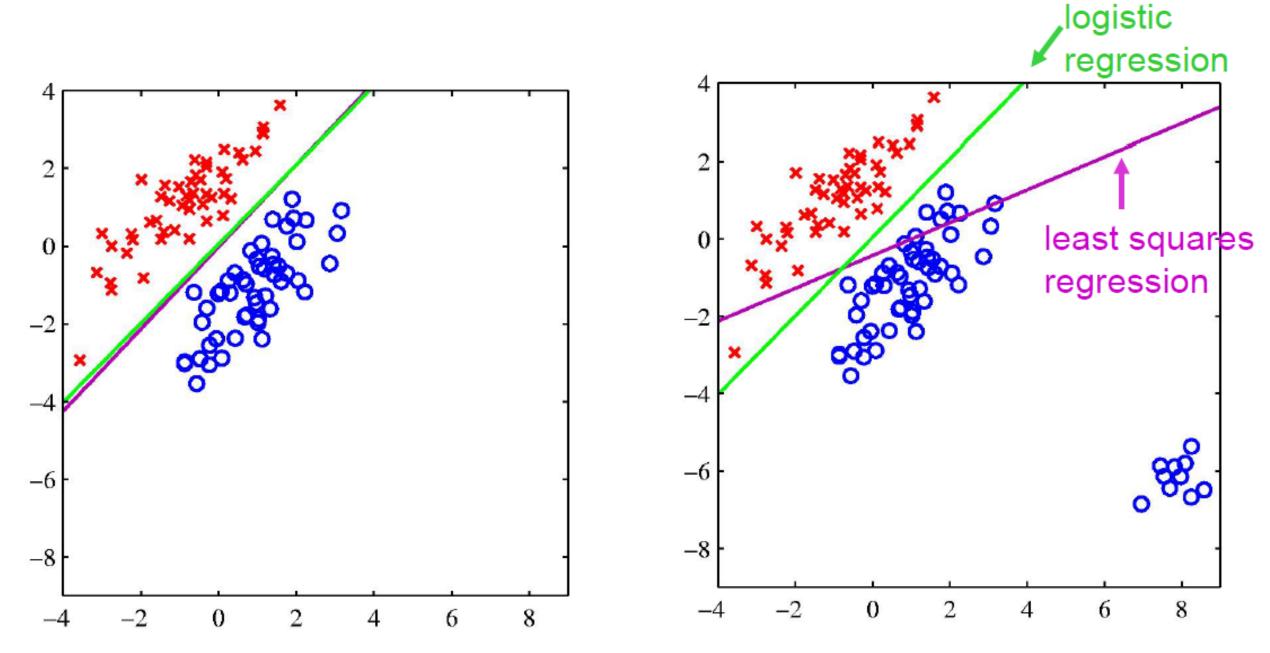
Решающая граница

- Как выглядит решающая граница логистической регрессии?
- $P(y = 0|\mathbf{x}) = P(y = 1|\mathbf{x}) = 0.5$
- $P(y = 1 | \mathbf{x}) = g(\mathbf{w}^T \mathbf{x} + w_0) = 0.5$, где $g(z) = \frac{1}{1 + \exp(-z)}$
- Решающая граница $\mathbf{w}^T\mathbf{x} + w_0 = 0$
- У логистической регрессии линейная решающая граница.



БГУИР, кафедра ЭВС, Вашкевич М.И., 9 декабря 2024 г.

Сравнение линейной и логистической регрессии



• Логистическая регрессия менее подвержена выбросам.

Обучение логистической регрессии

- На входе имеются p-мерные вектора признаков $\mathbf{x} \in \mathbb{R}^p$
- Требуется обучить вектор коэффициентов ${f w} = [w_0, w_1, ..., w_p]$
- Логистическая регрессия является вероятностной моделью
- Можно воспользоваться методом максимального правдоподобия

Условное правдоподобие

• Целевые переменные $y^{(i)} \in \{0,1\}$. Вероятность появления набора данных $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(n)}, y^{(n)}) \}$ можно описать функцией правдоподобия

$$CL(\mathbf{w}) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w}).$$

• Мы можем переписать каждую отдельную вероятность в следующем виде

$$p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w}) = p(y = 1|\mathbf{x}^{(i)};\mathbf{w})^{y^{(i)}} \times p(y = 0|\mathbf{x}^{(i)};\mathbf{w})^{1-y^{(i)}}$$
$$= p(y = 1|\mathbf{x}^{(i)};\mathbf{w})^{y^{(i)}} \times (1 - p(y = 1|\mathbf{x}^{(i)};\mathbf{w}))^{1-y^{(i)}}$$

• Мы можем обучить модель максимизировав правдоподобие:

$$\max_{\mathbf{w}} CL(\mathbf{w}) = \max_{\mathbf{w}} \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w})$$

• Проще работать с логарифмом функции правдоподобия $\log CL(\mathbf{w})$.

БГУИР, кафедра ЭВС, Вашкевич М.И., 9 декабря 2024 г.

Функция потерь (loss function)

$$CL(\mathbf{w}) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w})$$

$$= \prod_{i=1}^{n} p(y=1|\mathbf{x}^{(i)};\mathbf{w})^{y^{(i)}} \times (1-p(y=1|\mathbf{x}^{(i)};\mathbf{w}))^{1-y^{(i)}}.$$

• Обычно задачу максимизации заменяют задачей минимизации, можно записать следующую функцию потерь:

$$NLL(\mathbf{w}) = -\log CL(\mathbf{w})$$

$$= -\log \prod_{i=1}^{n} p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w})^{y^{(i)}} \times (1 - p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}))^{1 - y^{(i)}}$$

$$= -\sum_{i=1}^{n} y^{(i)} \log p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}) - \sum_{i=1}^{n} (1 - y^{(i)}) \log (1 - p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}))$$

$$= -\sum_{i=1}^{n} y^{(i)} \log p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}) + (1 - y^{(i)}) \log (1 - p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w})).$$

Градиентный спуск

$\min_{\mathbf{w}} NLL(\mathbf{w})$

• Градиентный спуск: на каждой итерации вычисляется направление наибольшего убывание и выполняется движение в этом направлении с шагом η :

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \eta \frac{\partial NLL}{\partial \mathbf{w}},$$

• Какова зависимость от **w**?

$$p(y = 1|\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x} + w_0)}$$

• Можно показать, что

$$\frac{\partial NLL}{\partial \mathbf{w}} = \sum_{i=1}^{n} (p(y = 1 | \mathbf{x}^{(i)}; \mathbf{w}) - y_i) \mathbf{x}^{(i)}$$

Выводы

Преимущества логистической регрессии

- Легко расширяется на многоклассовую классификацию;
- Вероятностная интерпретация на предсказание класса;
- Высокая скорость обучения;
- Быстрая классификация (быстрый вывод, inference);
- Хорошая точность на множестве наборов данных;
- Устойчивость к переобучению;
- Значение коэффициентов может быть интерпретировано, как индикатор важности признака;

Менее хорошее свойство

• Линейная решающая граница (слишком просто для сложных задач).

БГУИР, кафедра ЭВС, Вашкевич М.И., 9 декабря 2024 г.