4 ЛАБОРАТОРНАЯ РАБОТА № 4. ПОЭЛЕМЕНТНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ

ЦЕЛЬ РАБОТЫ – Изучение основных методов обработки изображений при помощи точечных операций в Python; освоение методов корректировки гистограммы изображения в Python.

4.1 Теоретические сведения

4.1.1 Преобразования яркости полутоновых изображений

Динамический диапазон изображения

Динамический диапазон изображения определяется как разница между наименьшим и наибольшим значениями пикселей в изображении. Мы можем определять функциональные преобразования (или отображения), которое позволит более эффективно использовать динамический диапазон. Эти преобразования в первую очередь применяются для улучшения контрастности (яркости) изображения.

В общем случае мы будем предполагать 8-битный (от 0 до 255) диапазон градации серого как для входных, так и для выходных изображений, но рассматриваемые методы могут быть обобщены на другие входные диапазоны и отдельные каналы из цветных изображений.

4.1.2 Преобразование яркости: общие сведения

Яркостными преобразованиями изображения $I_{input}(i,j)$ называются преобразование, описываемое формулой

$$I_{output}(i,j) = f\left(I_{input}(i,j)\right), \tag{4.1}$$

Преобразования яркости изображений относятся к точечным операциям (или к поэлементной обработке), если значение яркости пиксела после преобразования зависит от яркости одной точки (пиксела) исходного изображения и не зависит от ее местоположения. Пусть $x = l_{input}(i,j)$ это значение яркости пикселя в позиции (i,j) на исходном изображении, а $y = l_{output}(i,j)$ – это значение яркости пикселя в позиции (i,j) преобразованного изображения. Поэлементная обработка означает, что изменение яркости можно описать функцией y = f(x) независимо от координат пиксела. Ниже показаны несколько примеров построения функции f для различных практических целей.

4.1.3 Яркостный срез

С помощью яркостного среза изображения можно выделить области изображения с яркостью из определенного интервала. При этом остальным областям можно присвоить черный цвет и получить бинарное изображение (рис. 4.1, а) или оставить неизменными (рис. 4.1, б). Перемещая выделенный интервал по шкале яркости и изменяя его ширину, можно детально исследовать содержание изображения.

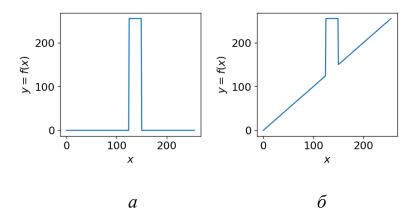


Рисунок 4.1 – Два варианта графического задания функции яркостного среза

Аналитически функция среза для первого варианта (рис. 4.1, а) задается следующим образом:

$$y = f(x) =$$

$$\begin{cases} 255, & \text{если } V_{min} < x < V_{max} \\ 0, & \text{иначе.} \end{cases}$$
(4.2)

4.1.4 Пилообразное контрастирование

Пилообразное контрастирование — увеличение контрастности в одном или нескольких диапазонах яркости (рис. 4.2). Оно также позволяет повысить детальность изображения в выбранном интервале яркости.

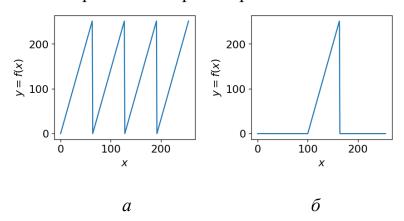


Рисунок 4.2 – Пилообразные варианты яркостного среза

4.1.5 Бинаризация изображения

Простейшим методом препарирования изображений является бинаризация. Она преобразует полутоновое изображение в бинарное (черно-белое). Преобразование имеет единственный параметр — порог V_{thr} , относительно которого яркость пикселов меняется на черную или белую (рис. 4.3). Функция бинаризации с глобальным (т. е. единым для всех пикселов) порогом имеет вид

$$y = f(x) =$$
 $\begin{cases} 255, & \text{если } x > V_{thr} \\ 0, & \text{иначе.} \end{cases}$ (4.3)

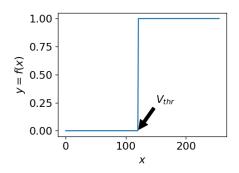


Рисунок 4.3 – Функция бинаризации с глобальным порогом

На следующем рисунке показан пример бинаризации полутонового изображения с порогом $V_{thr} = 100$.

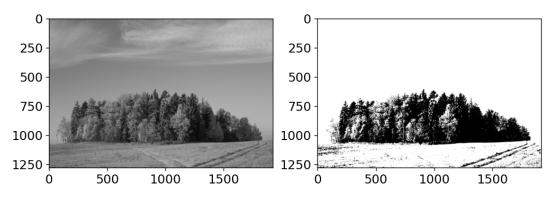


Рисунок 4 – Пример бинаризации с глобальным порогом

Наиболее простой вариант выбора порога заключается в нахождении минимального V_{min} и максимального V_{max} значений яркости изображения и вычисления среднего между ними:

$$V_{thr} = \frac{V_{max} - V_{min}}{2}. ag{4.4}$$

4.1.6 Растяжение контрастности

Чтобы выполнить растяжение контрастности, мы должны сначала знать верхний V_{max} и нижний V_{min} пределы значений пикселей, по которым изображение должно быть нормализовано, обозначаемые. Обычно это верхний и нижний пределы используемого диапазона квантования пикселей (т.е. для 8-битного изображения $V_{max} = 255$ и $V_{min} = 0$). В простейшей форме на начальном этапе операции контрастного растяжения входное изображение сканируется для определения максимального (I_{max}) и минимального значений пикселей (I_{min}), присутствующих на изображении. На основе этих четырех значений (V_{max} , V_{min} , I_{max} и I_{min}) диапазон пикселей изображения растягивается в соответствии со следующей формулой:

$$y = f(x) = (x - I_{max}) \left(\frac{V_{max} - V_{min}}{I_{max} - I_{min}} \right) + V_{max}$$
 (4.5)

Обратите внимание, что в соответствии с выражением (4.5) значение $f(I_{max}) = V_{max}$, а $f(I_{min}) = V_{min}$.

4.1.7 Гамма-преобразование (степенное преобразование)

Если изобразить график функции (4.5) он будет иметь линейный вид. Иногда для растяжения контрастности функция отображения y = f(x) должна иметь нелинейный вид. Один из вариантов построения такой функции является использование следующей степенной функции:

$$y = f(x) = \left(\frac{x - I_{min}}{I_{max} - I_{min}}\right)^{\gamma} (V_{max} - V_{min}) + V_{min}, \tag{4.6}$$

где γ — задает форму кривой отображения яркости.

Если $\gamma > 1$, то яркость отображения смещается вниз в сторону менее ярких значений. Если $\gamma < 1$, то яркость отображения смещается вверх в сторону более ярких значений. При $\gamma = 1$ функция отображения яркости имеет линейный вид. На рис. 5 показаны примеры графиков степенных отображений для различных параметров γ .

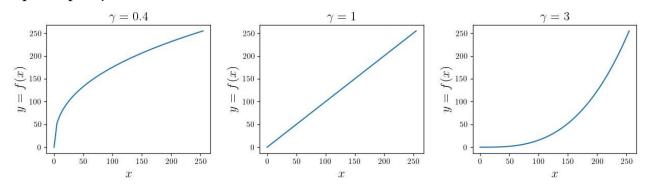


Рисунок 5 – Степенное преобразование для различных значений *у*

4.1.8 Степенное преобразование с ограничением входного диапазона

Иногда на практике требуется выполнить степенное преобразование в определенном диапазоне яркости $[I_L, I_H]$. В этом случае все пиксели изображения, которые имеют яркость $x < I_L$ отображаются в значение $y = V_{min}$, а пиксели со значением $x > I_H$ отображаются в значение $y = V_{max}$.

Математически степенное преобразование с ограничением входного диапазона можно записать следующим образом:

$$y = f(x) = \left(\frac{\min(\max(x, I_L), I_H) - I_L}{I_H - I_L}\right)^{\gamma} (V_{max} - V_{min}) + V_{min}, \tag{4.7}$$

На рис. 6 показаны примеры графиков степенных отображений с ограничением входного диапазона для различных параметров γ.

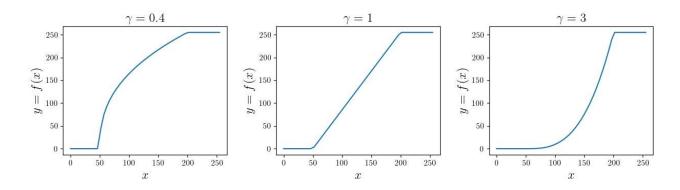


Рисунок 6 — Функции степенных преобразований для различных значений γ с ограничением входного диапазона: $I_L=50,\,I_H=200$

4.2 Обработка гистограммы изображения

4.2.1 Получение гистограммы

Гистограмма изображения — это функция, показывающая какое число раз на изображении появлялось каждое из допустимых значений пикселей. Например, если пиксель со значением 128 появлялся на изображении 5 раз, то можно сказать, что функция гистограммы для этого изображения в точке 128 будет иметь значение равное пяти: h(128) = 5. Если нормализовать функцию гистограммы так, чтобы общая сумма всех её значений в допустимом диапазоне аргумента была равна единице, мы можем рассматривать гистограмму изображения как дискретную функцию вероятности, которая определяет вероятность появления данного значения пикселя в изображении.

Формально гистограммой цифрового изображения, число уровней яркости которого лежит в диапазоне $V = [V_{min}, \ V_{max}]$ называют функцию вида

$$h(x_k) = n_k, (4.8)$$

где $x_k \in V$ — это k-й уровень яркости, а n_k — число пикселов изображения, уровень яркости которых равен v_k . Для изображения, которые хранятся в формате uint8 значение $V_{max}=255$, а значение $V_{min}=0$. Общее число уровней обозначают буквой $L=V_{max}-V_{min}+1$. Для формата данных uint8 значение L=256.

Как говорилось ранее, если нормировать гистограмму (т.е. поделить каждое значение $h(x_k)$ на число пикселов изображения), то получим величину:

$$p(x_k) = \frac{h(x_k)}{M \times N} = \frac{n_k}{M \times N},\tag{4.9}$$

где M и N — число строк и столбцов изображения.

Функция $p(x_k)$ — это вероятность появления уровня интенсивности v_k на данном изображении. Т.е. $p(v_k)$ представляет собой дискретную функцию плотности вероятности. Визуальный осмотр гистограммы изображения может выявить основной контраст, присутствующий в изображении, и любые потенциальные различия в распределении цветов компонентов сцены переднего плана и фона.

На рис. 4.7 приведен пример изображения и его гистограммы.

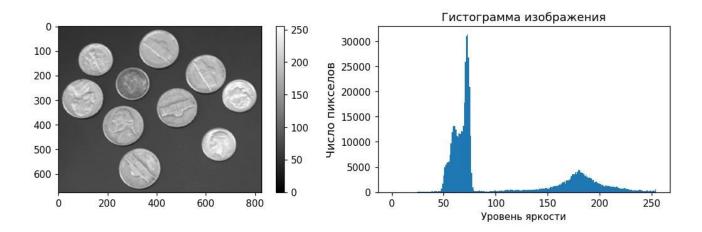


Рисунок 4.7 – Пример расчета гистограммы изображения

В данном примере мы видим график гистограммы с двумя отличительными пиками: высокий пик в нижнем диапазоне значений соответствует распределению яркости (интенсивности) фона изображения, а более низкий пик в более высоком диапазоне значений (т.е. яркие пиксели) соответствует объектам переднего плана (монетам).

4.2.2 Эквализация гистограммы

Под эквализацией гистограммы изображения понимают выполнения такого преобразования, в результате которого гистограмма изображения становится равномерной (приблизительно можно считать, что каждый пиксель появляется на изображении с равной вероятностью).

Рассмотрим вопрос получения такого преобразования T, после применения которого гистограмма изображения становится равномерной. Для простоты, вначале рассмотрим случай, в котором интенсивность изображения I распределена с непрерывной функцией распределения $p_I(x)$. После этого мы расширим наше описание на случай дискретных переменных.

Очевидно, что функция T(x) выполняет отображение:

$$T: [0,1] \to [0,1].$$

В данном случае имеется в виду, что каждому пикселю x, значение которого лежит в диапазоне от 0 до 1 будет ставится пиксель с значением также в диапазоне от 0 до 1. Мы считаем, что яркость нормирована, 0 соответствует черному цвету, а 1- белому.

Пусть $F_I(x)$ – функция распределения (cdf – cumulative distribution function) уровней яркости на изображении I. Предположим, что мы применили преобразование $T(\cdot)$ к изображению I, в этом случае мы получим новое изображение D:

$$D = T(I)$$

Функция распределения полученного изображения D будет задаваться как $F_D(x) = P(D[i,j] < x) = P(T(I[i,j]) < x) = P(I[i,j] < T^{-1}(x)) =$

$$=F_I\big(T^{-1}(x)\big).$$

Если T такое преобразование, что T(I) имеет равномерное распределение, то это значит, что

$$P(T(I[i,j]) < x) = x,$$
 (4.10)

и, следовательно,

$$F_I(T^{-1}(x)) = x. (4.11)$$

Если $T = F_I$, то уравнение (4.11) будет удовлетворено. Таким образом, преобразование экализирующее гистограмму это просто функция распределения данного изображения:

$$F_I(x) = \int_0^x p_I(z)dz \tag{4.12}$$

Уравнение (4.12) записано исходя из того, что яркость нормирована и лежит в диапазоне от 0 до 1.

Рассмотрим теперь дискретный случай. Число уровней яркости обозначим через L (как правило L=256). Дискретные значения яркости $x_i \in [0, L-1]$, где i=0,1,...,L-1. Далее пусть $p_I(x_i)$ – это значения нормированной гистограммы исходного изображения.

Для дискретного случая дискретная функция распределения равна:

$$F_I(x_i) = \sum_{k=0}^{i} p_I(x_i), \qquad i = 0, 1, \dots L.$$
 (4.13)

Чтобы из данной функции получить преобразование T(x), которое выполняет эквализацию гистограммы необходимо домножить (4.13) на L, чтобы максимальное значение соответствовало L. И также требуется применить оператор округления в меньшую сторону $\lfloor a \rfloor$, что соответствует операции floor. Таким образом, окончательное выражение для T(x) будет иметь следующий вид:

$$T(x_i) = \lfloor (L-1) \cdot F_I(x_i) \rfloor = \left[(L-1) \cdot \sum_{k=0}^i p_I(x_i) \right]. \tag{4.14}$$

Результат применения эквализации гистограммы показан на рис. 4.8

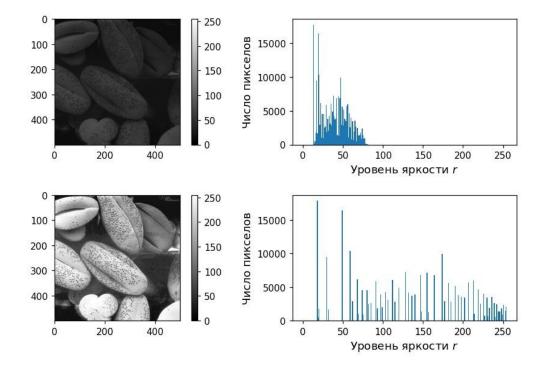


Рисунок 4.8 – Пример эквализации гистограммы

Рассмотрим пример эквализации простого изображения 4×4 , который позволит показать вычислительные аспекты данного алгоритма. Предположим, что необходимо выполнить эквализацию гистограммы монохромного изображения, представленного на рис. 4.9. Общее значение уровней яркости равно L=8.

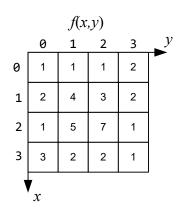


Рисунок 4.9 – Изображения для эквализации

Вначале построим гистограмму данного изображения $h_I(x_i)$. Результат показан на следующем рисунке.

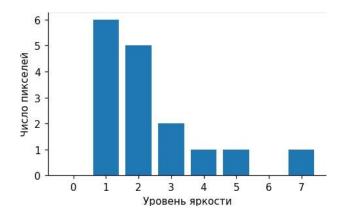


Рисунок 4.10 – Гистограмма изображения

Затем получим функцию распределения вероятности $p_I(x_i)$ по гистограмме $h_I(x_i)$ в соответствии с выражением (4.9)

$$p_I(x_i) = \frac{h_I(x_i)}{4 \times 4} = \frac{h_I(x_i)}{16}.$$

Результат показан на следующем графике.

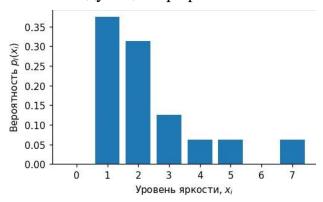


Рисунок 4.11 — Нормированная плотность вероятности

Численно значения $p_I(x_i)$ равны:

Построим функцию преобразования в соответствии с (4.14). Результат показан на следующем графике.

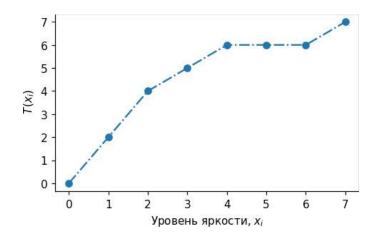


Рисунок 4.12 – Функция преобразования

Воспользуемся функцией $T(x_i)$ для преобразования изображения I (см. рис. 4.9):

$$D[i,j] = T(I[i,j]).$$

В результате получим изображение D:

[[2 2 2 4] [4 6 5 4] [2 6 7 2] [5 4 4 2]]

Построим теперь гистограмму изображения D (рис. 4.13)

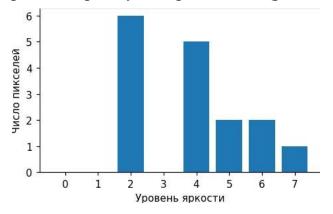


Рисунок 4.13 – Гистограмма изображения

4.2.3 Локальная эквализация гистограммы

Рассмотренный ранее метод гистограммной обработки являлся глобальными, что означало построение функции преобразования на основе анализа распределения яркостей по всему изображению. Хотя такой глобальный подход и пригоден для улучшения в целом, существуют случаи, когда приходится улучшать детали на основе анализа малых областей изображения (рис. 4.14). Связано это с тем, что число пикселей в таких областях мало и не может оказывать замет-

ного влияния на глобальную гистограмму. Решение состоит в разработке функции преобразования, основанной на распределении яркостей по окрестности каждого элемента изображения.

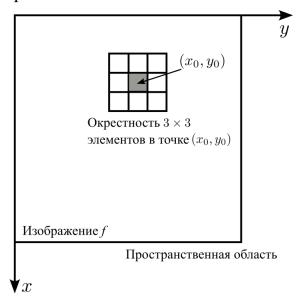


Рисунок 4.14 — Выделение области на изображении для метода локальной эквализации гистограммы

Локальная гистограммная обработка состоит из шагов:

- 1. Задается окрестность с центром в обрабатываемом элементе и центр этой окрестности передвигается от точки к точке.
- 2. Для каждого нового положения окрестности подсчитывается гистограмма по входящим в нее точкам и находится функция преобразования эквализации гистограммы (4.14).
- 3. Выполняется преобразование только центрального элемента окрестности.
- 4. Центр окрестности перемещается на соседний пиксель, и процедура повторяется.

4.2.4 Гистограммная подгонка

Процедура гистограммной подгонки описана в [6, стр. 98-102].

Подгонка гистограммы является по сути развитием метода эквализации гистограммы.

Вернемся опять к рассмотрению непрерывных интенсивностей. В этом случае вместо нормированных гистограмм мы можем рассматривать плотность распределения вероятности исходного изображения $p_I(x)$ и обработанного изображения $p_D(x)$. В случае эквализации гистограммы мы добивались того, чтобы все яркости на изображении были равновероятными, что означает, что $p_D(x)$ = const.

Теперь нам предстоит рассмотреть метод, в котором плотность распределения вероятностей описывается некоторой функцией:

$$p_D(x) = p_t(x),$$

Мы используем букву t от слова target, т.е. целевой.

Вернемся к уравнению (4.10). Оно получено нами для случая, когда целевое распределение $p_t(x)=1$ (при условии, что $0\leq x\leq 1$). Для плотности распределения $p_t(x)=1$ (кумулятивная) функция распределения равна

$$F_t(x) = \int_0^x p_t(x)dx = \int_0^x 1dx = x.$$

По этой причине и записывалось выражение (4.10).

В методе гистограммной подгонки предполагается, что $p_t(x)$ может иметь произвольную форму, при соблюдении условия нормировки

$$\int_{0}^{1} p_{t}(x)dx = 1. (4.15)$$

Пришло время рассмотреть вопрос, когда функция плотности распределения $p_t(x)$ имеет произвольный вид (естественно при условии, что (4.15) выполняется).

Перепишем уравнение (4.10) в следующем виде

$$P(T(I[i,j]) < x) = F_t(x) = \int_0^x p_t(x) dx$$
 (4.16)

Мы можем переписать $F_t(x)$, используя функцию распределения исходного изображения $F_I(x)$:

$$P(T(I[i,j]) < x) = F_I(T^{-1}(x)) = F_t(x)$$
(4.17)

Левую часть (4.17) можно переписать как

$$T^{-1}(x) = F_I^{-1}(F_t(x)). (4.18)$$

Далее от обратной функции T^{-1} перейдем к прямой:

$$T(x) = F_t^{-1}(F_I(x)) (4.19)$$

Рассмотрим задачу гистограммной подгонки монохромного изображения, показанного на рис. 4.15.

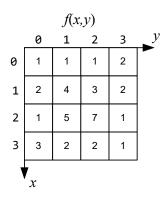


Рисунок 4.15 – Пример изображения (общее значение уровней яркости L=8.)

Целевая форма гистограммы приблизительно описывается гауссовой функцией (рис. 4.16)

$$\hat{p}_t(x) \sim e^{-\frac{(x-\mu)^2}{\sigma^2}},$$
 (4.20)

где $\mu = 0.625$, $\sigma = 0.125$.

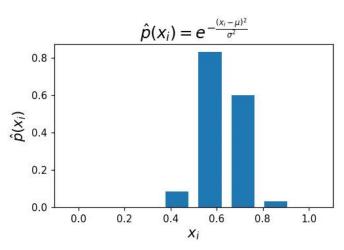


Рисунок 4.16 – Целевая форма плотности распределения вероятности

Обратимся к выражению (4.19), искомая нами функция преобразования T(x) является композицией двух функций F_t^{-1} и F_I . Причем функция $F_I(x)$ уже была найдена в предыдущем примере.

x_i	0	0,142	0,285	0,428	0,571	0,714	0,857	1
$F_I(x_i)$	0	0.375	0.6875	0.8125	0.875	0.9375	0.9375	1
$T(x_i)$	0	2	4	5	6	6	6	7

Поэтому ближайшей целью является построение функции F_t и нахождение обратной функции F_t^{-1} .

Для дискретных нормированных значений яркости x_i рассчитаем целевую форму плотности распределения $\hat{p}_t(x_i)$.

x_i	0	0,142	0,285	0,428	0,571	0,714	0,857	1
$\hat{p}_t(x_i)$	≈0	≈0	≈0	0.08	0.83	0,6	0.03	≈0

Получим нормированную функцию распределения

$$p_t(x_i) = \frac{\hat{p}_t(x_i)}{\sum_{i=0}^{L-1} \hat{p}_t(x_i)}.$$
 (4.21)

На рис. 4.17 показана нормированная функция распределения $p_t(x_i)$

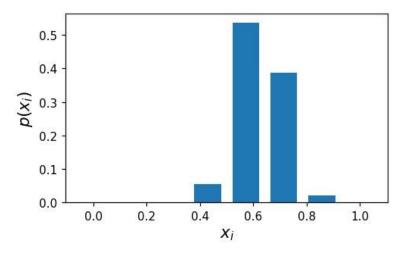


Рисунок 4.17 – Нормированная плотность вероятности

Численно значения $p_t(x_i)$ равны:

x_i	0	0,142	0,285	0,428	0,571	0,714	0,857	1
$p_t(x_i)$	≈0	≈0	≈0	0.05	0.53	0,38	0.02	≈0

Построим функцию распределения вероятности $F_t(x_i)$:

x_i	0	0,142	0,285	0,428	0,571	0,714	0,857	1
$F_t(x_i)$	≈0	≈0	≈0	0.05	0.59	0,98	≈1	1

Теперь перейдем к денормированным переменным x_i и отмасштабируем $F_t(x_i)$:

$$T_t(x_i) = \lfloor (L-1)F_t(x_i) \rfloor$$

В результате получим следующую функцию:

x_i	0	1	2	3	4	5	6	7
$T_t(x_i)$	0	0	0	0	4	6	6	7

Функция $T_t(x_i)$ графически показана на рис. 4.18.

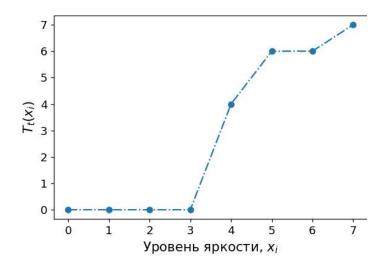


Рисунок $4.18 - \Phi$ ункция $T_t(x_i)$

Запишем теперь обратную функцию $F_t^{-1}(x_i)$ для денормированных переменных это будет означать T_t^{-1}

	10 0 7 7 7 1	0 01100 10012	<u>- l</u>					
x_i	0	1	2	3	4	5	6	7
$T_t^{-1}(x_i)$	0	3	3	3	4	4	5	7

И наконец составим композицию функций $F(x_i)$ и $T_t^{-1}(x_i)$

$$T(x_i) = T_t^{-1} \big(F_I(x_i) \big).$$

Функция $T(x_i)$ может быть записана в табличном виде:

x_i	0	1	2	3	4	5	6	7
$F_I(x_i)$	0	2	4	5	6	6	6	7
$T_t^{-1}(F(x_i))$	0	3	4	4	5	5	5	7

Воспользуемся функцией $T(x_i)$ для преобразования изображения I:

$$D[i,j] = T(I[i,j]).$$

В результате получим изображение D:

4.3 Порядок выполнения работы

1) Написать функцию на языке Python для выполнения преобразования яркости в соответствии с вариантом (таблица 4.1).

Таблица 4.1- Варианты для задания 1

Номер варианта	Вид операции
1	Яркостный срез, (см. рис. $1, a$)

2	Яркостный срез, (см. рис. $1, \delta$)
3	Пилообразное контрастирование (см. рис. 4.2, <i>а – четыре зубца</i>)
4	Пилообразное контрастирование (см. рис. 4.2, δ – один смещенный зубец)
5	Бинаризация изображения (формула (4.3))
6	Растяжение контрастности (формула (4.5))
7	Степенное преобразование яркости (формула (4.6))
8	Степенное преобразование яркости с ограничением входного диапазона (формула (4.7))

- 2) Загрузить изображение из папки LR3\test-1 в соответствии с номером варианта и обработать функцией из задания 1. Параметры преобразования подберите самостоятельно для достижения наилучшего визуального эффекта.
- 3) Разработать функцию на языке Python для расчета гистограммы полутонового изображения. Используя разработанную функцию построить гистограммы исходного и обработанного изображения из задания 2.
- 4) Разработать функцию, реализующую метод обработки изображения на основе его гистограммы, в соответствии с вариантом (таблица 4.2).

 Номер варианта
 Вид операции

 1-2
 Эквализация гистограммы

 3
 Локальная эквализация гистограммы (размер окрестности 31х31)

 4
 Локальная эквализация гистограммы (размер окрестности 11х11)

 5-8
 Гистограммная подгонка

Таблица 4.2– Варианты для задания 4

- 5) Загрузить изображение из папки LR3\test-2 в соответствии с номером варианта и обработать функцией из задания 4. Параметры преобразования подберите самостоятельно для достижения наилучшего визуального эффекта.
 - 6) Оформить отчет в соответствии с СТП 01-2017.

4.4 Дополнительные задания

1) Возьмите в качестве вида целевой гистограммы функцию:

$$h(x_k) = (x_k - 128)^2 (4.22)$$

 $x_k = 0,1,...255.$

Выполните подгонку гистограммы, чтобы результирующее изображение имело гистограмму вида $h(x_k)$. На результирующем графике приведите: 1) исходное изображение; 2) изображение после подгонки гистограммы; 3) гистограмму исходного изображения; 4) гистограмму изображения после подгонки.